SPACAL Test beam comparison in sPHENIX simulation

Jin Huang (BNL)

many thanks to

- Oleg Tsai
- Alex Kiselev
- Craig Woody
- John Haggerty

Overview

- One of the long last concern is lack of beam test calibration for our simulation
- Obtained eRD1 2014 beam test geometry and data with many help from Oleg Tsai, Alex Kiselev and Craig Woody
- Implemented in Geant4 -> SPACAL towering -> digitization

Courtesy: O. Tsai (UCLA)

Test beam in sPHENIX:

More detailed views of fibers (φ500um double cladding)

Particle view (half cm front Al cover not shown)

Side views

(17 degree indenting as in test beam, 2.4-2.7% energy spread and half-cm front Al cover not shown)

Further refine the simulation VS reality New from last week

- Implemented the beam momentum spread
 - 2.4% for 8 GeV/c beam, 2.7% for 4 GeV/c beam
- Baseline simulation configuration (same as 3rd iteration of production):
 - Hadronic model: QGSP_BERT_HP
 - Light production: Geant4 default Birk model (G4EmSaturation::VisibleEnergyDeposition)
 - Group Geant4 hits into fibers then into towers
 - Digitalization with test beam performance:
 - photon fluctuation (500p.e./GeV, Poisson model)
 - Pedestal noise (2ADC)
 - Zero suppression of (4ADC)
- Comparison to three tunes of the hadronic model
 - Our baseline
 - Tuning of the production threshold
 - Alex K.'s study used a 1um production threshold cut in EICROOT simulation.
 - Tested in our software
 - Use of the CALICE Birk constant
- ▶ Estimation for the beam composition: ~10% muon in anti-electron cut sample:

sPHENIX beam test, Liang, Xiaochun and John H.

Test	Beam
Com	position:

		4 GeV	8 GeV	$16~{ m GeV}$	$25~{ m GeV}$	$32~{ m GeV}$	$40~{ m GeV}$	$50~{ m GeV}$	$60~{ m GeV}$
	pion	32.1%	39.8%	67.2%	85.7%	91.9%	94.6%	96.5%	97.2%
	electron	63.7%	56.4%	26.1%	8.9%	3.7%	1.6%	0.6%	0.3%
ai	muon	4.2%	3.8%	6.7%	5.4%	4.4%	3.8%	2.9%	2.5%

Test beam comparison: 8 GeV beams shower in Geant4 VS data

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (2ADC), photon fluctuation (500e/GeV), NO fiber/fiber response

Test beam comparison: 4.12 GeV/c beams shower in Geant4 VS data

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

Full Geant4 sim QGSP_BERT_HP + light yield model (Geant4 default Birk)
Pedestal noise (2ADC), photon fluctuation (500e/GeV), NO fiber/fiber response

Test beam comparison: 12 GeV/c beams shower in Geant4 VS data

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

Hadronic model tuning comparison 8 GeV hadron data VS sim

More plots in backup. Example checks in hadron response for different tunings:

Default configuration production threshold of 1mm, Birk constant = 0.00794 cm/MeV

Baseline configuration+ production threshold of 1um

Baseline configuration+ CALICE Birk constant0.0151 cm/MeV

Next step

- Use the test beam data comparison in pre-CDR lineshape plot as simulation justification.
- Use the same towering -> digitalization strategy in pre-CDR analysis
- Discussion: strategy to save/pass down tower information:
 - Geant4 RawTower -> Digitalized Tower -> Calibrated Tower -> Clustering/Jet Finding

Extra information

8 GeV beams VS Production threshold

Geant4 Default production threshold (1mm)

Production

threshold cut

(1um)

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

Pion- (red) K- (blue) e contaim. (black) Sim VS data

CALICE Birk Constant

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

CALIC + Towering

Electron Sim (line) VS data (point)

Pion- (red) K- (blue) e contaim. (black) Sim VS data

